Scalable Zero-Knowledge Protocols From Vector-OLE

Peter Scholl
24 January 2022, Bar-Ilan Winter School

Based on joint work with:

Carsten Baum, Alex Malozemoff, Marc Rosen, Lennart Braun, Alex Munch-Hansen, Benoit Razet

Zero-knowledge for circuit satisfiability

Verifier
Outputs 1 iff C(w) = 0

- Properties: completeness, soundness, zero-knowledge
 - This talk: proof of knowledge (honest verifier)

The Zero Knowledge Zoo: a few properties

- Runtime:
 - o Prover, verifier
- Proof size
- Memory footprint
- Interactive vs non-interactive
- Public verifier vs designated verifier

ZK from VOLE: goals and properties

Goal: large-scale statements with low computation/memory overhead

❖ Prover runtime \approx cost of evaluating C

Properties:

- Linear-size proofs (worst-case)
- Designated verifier, (possibly) interactive

Motivation: (DARPA SIEVE program)

- > Prove properties of complex programs, e.g. exploit for bug bounty
- > Designated verifier and high interaction are fine in many settings (e.g. MPC)

Overview

Information-theoretic MACs from VOLE

ZK from VOLE: *Mac'n'Cheese* and friends

Non-interactive; streaming

Optimized proofs for disjunctive statements

A2B: arithmetic/binary conversions

VOLE as information-theoretic MACs

- View M_i as MAC on a_i under key (Δ, K_i)
- If Bob tries to open to $a_i' = a_i + e$:
 - Finding valid MAC M' implies $(M'-M_i)\cdot e^{-1}=\Delta$
 - Succeeds with pr. 1/q

VOLE as information-theoretic MACs

- * MAC can be seen as a commitment to a_i :

 Write $[a_i]$
- MACs are linearly homomorphic:
 - \succ Given [a], [b], P and V can locally compute $[a]+[b]\cdot c+d$

- * What about small fields, like \mathbb{F}_2 ?
 - Use subfield VOLE: $M = K + a\Delta$ where $a \in \mathbb{F}_2$ and $M, K, \Delta \in \mathbb{F}_{2^k}$

Commit & Prove Protocols: instruction set

Commit $(x) \rightarrow [x]$:

- $_{\circ}$ Take \$-VOLE element [r]
- \circ **P** sends d = x r
- Let [x] := [r] + d

$Open([x]) \rightarrow x$:

- \circ **P** sends x
- AssertZero([x] x)

AssertZero([a_1], ..., [a_m]):

- \circ **V** sends random $\chi_1, ..., \chi_m \in \mathbb{F}$
- \circ **P** sends $\chi_1 M_1 + \cdots + \chi_m M_m$
- V checks MAC

Mac'n'Cheese: Commit-and-Prove style ZK

[BMR**S** 21]

MAC the input: Commit(w_1), ..., Commit(w_n) \rightarrow [w_1], ..., [w_n]

- Evaluate circuit gate-by-gate
- Linear gates: easy
- Multiply([x], [y])
 - Commit ([z]) (for z = xy)
 - Run verification to check that z = xy
 - Output wire [z]: AssertZero([z])

Multiplication in Mac'N'Cheese: simple version

[BMR**S** 21]

- * For each product [x], [y], [z]
 - \circ **P** commits to [c] (= [ay]) for random [a]
 - \circ **V** sends random challenge $e \in \mathbb{F}$
 - $\circ \quad d = \mathsf{Open}(e \cdot [x] [a])$
 - AssertZero($e \cdot [z] [c] d \cdot [y]$)

Soundness:

Passing AssertZero implies

$$c - ay = e \cdot (z - xy)$$

o If $z - xy \neq 0$, have guessed e

Cost: P sends 3 field elements (for [z], [c] and d)

Multiplication in Mac'N'Cheese: fancy version

[BMR**S** 21]

- * Batch verify $([x_i],[y_i],[z_i])$, for i=1,...,|C|
 - Use polynomial based method from fully-linear IOPs [BBCGI 19]
 - **Cost:** $O(\log |C|)$ rounds and communication

Mac'N'Cheese: Simple vs Fancy

Communication:

$$|w| + 3|C|$$
 vs

$$|w| + 3|C|$$
 vs. $|w| + |C| + O(\log |C|)$

(ignoring \$-VOLE)

O(|C|)

Computation:

Rounds:

 $O(\log |C|)$ VS.

Streaming zero-knowledge proofs

- For complex programs, storing circuit in memory is infeasible
 - \triangleright E.g. 10s of billions of gates \Rightarrow hundreds of GB
- Streaming Mac'N'Cheese?
 - > Fancy: requires batch verification 🕾
 - ➤ Simple: batch AssertZero at end ☺
- What if we verify in smaller batches?
 - > Worse round complexity 🕾

Streaming with Mac'n'Cheese: Fiat-Shamir

- Ideally: want to stream proof while being non-interactive
 - Fiat-Shamir: take care when using on multi-round protocol
 - Worst-case, F-S soundness degrades exponentially with # rounds
- Mac'n'Cheese satisfies round-by-round soundness [CCHLRR 19]
 - Soundness error $\approx Q/|\mathbb{F}|$ for Q random oracle queries (independent of round complexity!)
- Gives streamable designated-verifier NIZK (with \$-VOLE preprocessing)

Disjunctions in Commit-and-Prove Systems

Disjunctions

Optimizing Disjunctions

Want to communicate only information proportional to the longest branch

Key observation:

- Prover's messages in proving $C_i(w)$ are all random elements, or AssertZero
- Given random elements, Verifier doesn't know whether they're for C_1 or C_2 .
- Only send messages of true branch! ⇒ Verifier uses same messages to evaluate both.

Problem: how to AssertZero in the right branch?

Solution: small "OR proof" to check 1-out-of-m

sets of AssertZero

Disjunctive proofs in Mac'n'Cheese

Prove disjunction of clauses C_1 , ..., C_m where $C_i = 1$

- Prover runs protocol for C_i
- Verifier sends random challenges (as normal)
- End of protocol:
 - P needs to prove $[z_i] = 0$, but **V** shouldn't know i!
 - o Idea: Both parties can define all possible commitments $[z_1]$, ..., $[z_m]$
 - All values "garbage" except for z_i
 - Run OR proof to show that $\exists i$ such that $z_i = 0$ [CDS94]

Overall communication: $O(max(C_i)) + O(m)$

- Naive approach: $O(\Sigma C_i)$
- \rightarrow Up to a factor m savings!

Optimizing Disjunctions: Summary

Disjunctions can be optimized for any linear IOP-like protocol

Recently, also certain sigma protocols [GGHK21]

Also support threshold disjunctions for satisfying k-out-of-m clauses C_1, \ldots, C_m :

Communication: $k \cdot \max(|C_i|) + O(m)$

• Naïve: $\sum |C_j|$

Disjunctions inside disjunctions (inside disjunctions...)

• O(m) becomes $O(\log m)$

ZK from VOLE: other approaches

- Line-point ZK [DIO 21], QuickSilver [YSWW 21]
 - Non-black box use of VOLE
 - \triangleright Idea: locally multiplying MACs gives a quadratic relation in key Δ

$$[x],[y],[z]$$
 $[c]$

c is a valid MAC iff z = xy

▶ Batch MAC check \Rightarrow batch mult. check with O(1) communication!

Comparing Performance of VOLE-based protocols

Protocol	Boolean		A rith $_{1}$	metic	Disjunctions
	Comm.	Mmps	Comm.	Mmps	
Stacked garbling [HK20]	128	0.3			✓
Mac'n'Cheese (simple) [BMRS21]	9	_	3		√
Mac'n'Cheese (batched)[BMRS21]	$1 + \epsilon$	6.9	$1 + \epsilon$	0.6^{4}	✓
QuickSilver [YSWW21]	1	12.2	1	1.4	Х

Mmps: millions of mults per sec

Conversions in ZK protocols

Appenzeller to Brie: Efficient conversions between \mathbb{F}_2 , \mathbb{F}_p and \mathbb{Z}_{2^k} [Baum, Braun, Munch-Hansen, Razet, **S** '21]

Efficient conversion with Appenzeller2Brie

Motivation:

Proof systems only support input in \mathbb{F}_2 or \mathbb{F}_p Certain circuits are simpler over other field

Ideally: convert to the most efficient data format for each task during the proof

The problem

Performance metric: #AND/multiplications

- 1. Integer multiplication has a large binary circuit
- 2. Comparison/truncation expensive to emulate in \mathbb{F}_p

Appenzeller2Brie in a nutshell

We require $p > 2^{m+1}$, approach works for bounded x

Use "EdaBits", similar to [EGK+20,WYX+21]

Appenzeller2Brie in a nutshell

Similar to "EdaBits", used in [EGK+20,WYX+21]

Problems:

- 1. $e \in \{0,1\}$ only gives soundness $\frac{1}{2}$
- 2. Larger *e* is expensive in binary world

A2B: summary

- Instead of randomizing with challenge *e*, use cut-and-choose
 - Place random conversion tuples into buckets, open small fraction
- Cost: $\approx B$ addition circuits for buckets of size $B \geq 3$
- Optimizations, extensions:
 - Binary circuits for checking conversions allowed to be faulty
 - Use to verify truncations and comparisons

Zero-Knowledge over \mathbb{Z}_{2^k}

Mac'n'Cheese does not work over \mathbb{Z}_{2^k} naively.

Solution 1: Emulate operations over \mathbb{F}_2 (done in QuickSilver)

Solution 2: Extend Mac'n'Cheese to \mathbb{Z}_{2^k}

Problems:

- 1. MAC and multiplication check fails due to zero divisors
- 2. VOLE not efficient for \mathbb{Z}_{2^k}

A2B: solves (1) using SPDZ2k tricks. (2): still open!

Conclusion

- VOLE ⇒ information-theoretic MACs
 - Powerful for lightweight and scalable zero-knowledge with low memory costs
- "Stacked" OR proof technique
 - Optimizes disjunctions in many settings
- Appenzeller to Brie
 - \circ Conversion gadgets for \mathbb{F}_2 , \mathbb{F}_p and \mathbb{Z}_{2^k}

Open questions

- Sublinear proofs for general circuits
 - Succinct vector commitments from VOLE?
- Beyond designated verifier
 - Some recent progress for multi-verifier setting (2022/082 and 2022/063)
- Improve conversions and \mathbb{Z}_{2^k} support

