Scalable Zero-Knowledge Protocols From
Vector-OLE

Peter Scholl
24 January 2022, Bar-llan Winter School

Based on joint work with:
Carsten Baum, Alex Malozemoff, Marc Rosen,

Lennart Braun, Alex Munch-Hansen, Benoit Razet
/v GQF\EE%SSITY

/ero-knowledge for circuit satisfiability

Circuit C:F* > F

® & "0 0‘

Prover Verifier
Witness w € " Outputs 1 iff C(w) = 0

< Properties: completeness, soundness, zero-knowledge

» This talk: proof of knowledge (honest verifier)

AARHUS
/v UNIVERSITY

The Zero Knowledge Zoo: a few properties

e Runtime:

o Prover, verifier

e Proofsize
e Memory footprint o

e Interactive vs non-interactive . !‘

Public verifier vs designated verifier

) Y7
|

i AARHUS
‘JQ‘ / NP UNIVERSITY

/K from VOLE: goals and properties

Goal: large-scale statements with low computation/memory overhead
< Prover runtime = cost of evaluating C

Properties:
> Linear-size proofs (worst-case)

> Designated verifier, (possibly) interactive

Motivation: (DARPA SIEVE program)

» Prove properties of complex programs, e.g. exploit for bug bounty

» Designated verifier and high interaction are fine in many settings (e.g. MPC)

AARHUS
/v UNIVERSITY

Overview

Information-theoretic MACs
from VOLE

U

ZK from VOLE: Mac’n’Cheese and

friends
Non-interactive; Optimized proofs for A2B: arithmetic/binary
streaming disjunctive statements conversions

AARHUS
/v UNIVERSITY

VOLE as information-theoretic MACs

a; € IFq A «]Fq
VOLE
Mi:Ki+CliA Ki<—]F

e View M; as MAC on a; under key (A, K;)

« If Bobtriestoopentoa; = a; + e:
> Finding valid MAC M’ implies (M’ — M;) e~ = A

o Succeeds with pr. 1/q
/v Sﬁﬁ/#%,m

VOLE as information-theoretic MACs

MAC can be seen as a to q;:
Write [a;]

MACs are linearly homomorphic:

> Given [a], [b], P and V can locally compute [a] + [b] - ¢ + d

» What about small fields, like IF,?

o Use :M =K + aAwherea € F, and M,K,A € IF,«

AARHUS
/v UNIVERSITY

Commit & Prove Protocols: instruction set

(x) = [x]:
o Take $S-VOLE element [r]
o Psendsd =x—r

o Let|x]:=|r]+d

([x]) = x:
o Psendsx

(lx] = x)
(lai], ..., [am]):

o Vsendsrandom yq{,...,Xm € F
o Psends y;M; + -+ x,, M,
o V checks MAC

AARHUS
/v UNIVERSITY

Mac’'n'Cheese: Commit-and-Prove style ZK

[BMRS 21]

MAC the input: Commit(wy), ..., Commit(wy) = [wq], ..., [W,,]
o Evaluate circuit gate-by-gate

e Linear gates: easy

o Multiply([x], [v])
- Commit ([z]) (for z = xy)

o Run verification to check that z = xy

e Output wire [z]: AssertZero(|z])
/v

AARHUS
UNIVERSITY

10

Multiplication in Mac’N'Cheese: simple version

[BMRS 21]
+ For each product [x], [v], [Z]

o P commitsto [c] (= [ay])for random [a]
o Vsends random challenge e € F

o d =O0pen(e-|[x] — [a])

- AssertZero(e - |z] — |c] —d - [y])

Soundness:
o Passing AssertZero implies

c—ay=ce-(z—xy)

o Ifz—xy # 0, have guessed e

Cost: P sends 3 field elements (for [z], [c] and d)
/v ﬁﬁmgssm

Multiplication in Mac’N’Cheese: fancy version

[BMRS 21]
« Batch verify (|x;], |y;], [z;]), fori =1, ..., |C]|

> Use polynomial based method from fully-linear IOPs [BBCGI 19]

> Cost: O(log|C|) rounds and communication

AARHUS
/v UNIVERSITY

Mac’N'Cheese: Simple vs Fancy

« Communication: lw| + 3|C| vs. |w|+|C|+ O(og|C|)
(ignoring S-VOLE)
« Computation: o(|C))

« Rounds: 1 vs. O(log|C])

/ AARHUS
NP UNIVERSITY

13

Streaming zero-knowledge proofs

« For complex programs, storing circuit in memory is infeasible

> E.g. 10s of billions of gates = hundreds of GB

+» Streaming Mac’N’Cheese?
> Fancy: requires batch verification ®

> Simple: batch atend ®

+» What if we verify in smaller batches?

> Worse round complexity ®

/v

AARHUS
UNIVERSITY

14

Streaming with Mac’n’Cheese: Fiat-Shamir

« ldeally: want to proof while being
> Fiat-Shamir: take care when using on multi-round protocol

> Worst-case, F-S soundness degrades exponentially with # rounds

+» Mac’n’Cheese satisfies [CCHLRR 19]
> Soundness error = Q /|F| for Q random oracle queries

(of round complexity!)

+ Gives (with S-VOLE preprocessing)

AARHUS
/v UNIVERSITY

Comm

Disjunctions in

it-and-Prove Systems

/v

AARHUS
UNIVERSITY

16

Disjunctions

Classic approach:
OR proof [CDS 94]

Optimizing Disjunctions

e Want to communicate only information proportional to the longest branch

o Key observation:
- Prover’s messages in proving C;(w) are all random elements, or AssertZero
- Given random elements, Verifier doesn’t know whether they’re for C; or C,

- Only send messages of true branch! = Verifier uses same messages to evaluate
both.

\
Problem: how to AssertZero in the right branch?

Solution: small “OR proof” to check 1-out-of-m
sets of AssertZero

AARHUS 18
/) / NP UNIVERSITY

Disjunctive proofs in Mac'n’Cheese

Prove disjunction of clauses C,, ..., C,, where C; = 1

Prover runs protocol for C;
Verifier sends random challenges (as normal)

End of protocol:

o P needsto prove [z] =0, but V shouldn’t know /!

o ldea: Both parties can define all possible commitments [z,], ..., [z,,]
s Allvalues “garbage” except for z

o Run OR proof to show that 3/ such that z; = 0 [cDs94]

Overall communication: O(max(C;)) + O(m)
Naive approach: O(2C)
— Up to a factor m savings!

AARHUS 19
/v UNIVERSITY

Optimizing Disjunctions: Summary

Disjunctions can be optimized for any linear |OP-like protocol
e Recently, also certain sigma protocols [GGHK21]

Also support threshold disjunctions for YO DAWG | HEARD YOU LIKE DISIUNCTIONS
satisfying k-out-of-m clauses Cy, ..., C);:
Communication: k - maX(‘CjD + 0(m)
e Naive:)| (|

was”

3.
SO WE PUT DISIUNCTIONS INSIDE

.. : . .. : e DISIUNCTIONS INSIDE DISIUNCTIONS
Disjunctions inside disjunctions (inside disjunctions...) &=

e (0(m) becomes O(logm)

AARHUS 20
/ NP UNIVERSITY

/K from VOLE: other approaches

e Line-point ZK [Di0 21], QuickSilver [ysww 21]
> Non-black box use of VOLE

> ldea: multiplying MACs gives a quadratic relation in key A

[x], [yl [z] = [c]

c isavalid MACiff z = xy

> Batch MAC check = batch mult. check with !

AARHUS
/v UNIVERSITY

Comparing Performance of VOLE-based protocols

Protocol Boolean Arithmetic Disjunctions
Comm. Mmps Comm. Mmps

Stacked garbling [HK?20)| 128 0.3 — — v

Mac’n’Cheese (simple) [BMRS21 9 — 3 — v

Mac’n’Cheese (batched)BMRS21] 1 +¢ 6.9 1+e€ 0.6 v

QuickSilver [YSWW21] 1 122 1 1.4 X

Mmps: millions of mults per sec

AARHUS 22
/v UNIVERSITY

Conversions in ZK protocols

Appenzeller to Brie: Efficient conversions between ¥, IF), and Z, 1
[Baum, Braun, Munch-Hansen, Razet, S ‘21]

AARHUS
/ NP UNIVERSITY

23

Efficient conversion with Appenzeller2Brie

Motivation:
Proof systems only support input in I, or [,
Certain circuits are simpler over other field

ldeally: convert to the most efficient data
format for each task during the proof

AARHUS
/v UNIVERSITY

The problem

I
i

a o

Performance metric:
#AND/multiplications

1. Integer multiplication has a large binary circuit

2. Comparison/truncation expensive to emulate in ¥,

/v

AARHUS
UNIVERSITY

25

Appenzell

er2Brie in a nutshell

Mac’'n’Cheese
over [F,
A2B:
[%0], s [Xim] Is the
same!
HI

Mac’'n’Cheese
over IFp

We require p > 2™*1, approach works for bounded x

Use “EdaBits”, similar to [EGK+20,WYX+21]

/v

AARHUS
UNIVERSITY

26

Appenzeller2Brie in a nutshell

Mac’'n’Cheese Mac’'n’Cheese
over [F, over [,

%0, e [%m]

Idea:

———— Popensx+e-yj
L“L . in both worlds [1yB]

5], - [y;%]

Similar to “EdaBits”, used in [EGK+20,WYX+21]

Problems:
7. e € {0,1} only gives soundness %
2. Larger e is expensive in binary world

AARHUS
/v UNIVERSITY

27

A2B: summary

o Instead of randomizing with challenge e, use

o Place random conversion tuples into buckets, open small fraction

e Cost: = B addition circuits for buckets of size B > 3

o Optimizations, extensions:
o Binary circuits for checking conversions allowed to be

o Use to verify and

AARHUS
/v UNIVERSITY

Zero-Knowledge over Z,k

Mac’n’Cheese does not work over Z,x naively.

Solution 1: Emulate operations over F, (done in QuickSilver)
Solution 2: Extend Mac’n‘Cheese to Z,«

Problems:
1. MAC and multiplication check fails due to zero divisors
2. VOLE not efficient for Z,«

A2B: solves (1) using SPDZ2k tricks. (2): still open!

AARHUS
/v UNIVERSITY

Conclusion

e VOLE=

- Powerful for and zero-knowledge with costs

o “Stacked” OR proof technique

o Optimizes disjunctions in many settings

o Appenzeller to Brie

o Conversion gadgets for IF,, IF), and Z,x

AARHUS
/v UNIVERSITY

Open guestions

o Sublinear proofs for general circuits

o Succinct vector commitments from VOLE?

o Beyond designated verifier

> Some recent progress for multi-verifier setting (2022/082 and 2022/063)

« Improve conversions and Z,k support

AARHUS
/v UNIVERSITY

31

