
Scalable Zero-Knowledge Protocols From
Vector-OLE

Peter Scholl
24 January 2022, Bar-Ilan Winter School

Based on joint work with:
Carsten Baum, Alex Malozemoff, Marc Rosen,
Lennart Braun, Alex Munch-Hansen, Benoit Razet

Zero-knowledge for circuit satisfiability

v Properties: completeness, soundness, zero-knowledge

Ø This talk: proof of knowledge (honest verifier)

2

Prover
Witness 𝑤 ∈ 𝔽!

Verifier

Circuit 𝐶: 𝔽! → 𝔽

Outputs 1 iff 𝐶 𝑤 = 0

…

The Zero Knowledge Zoo: a few properties
● Runtime:

○ Prover, verifier

● Proof size

● Memory footprint

● Interactive vs non-interactive

● Public verifier vs designated verifier

3

ZK from VOLE: goals and properties

Goal: large-scale statements with low computation/memory overhead
v Prover runtime ≈ cost of evaluating 𝐶

Properties:
Ø Linear-size proofs (worst-case)

Ø Designated verifier, (possibly) interactive

Motivation: (DARPA SIEVE program)

Ø Prove properties of complex programs, e.g. exploit for bug bounty

Ø Designated verifier and high interaction are fine in many settings (e.g. MPC)

4

Overview

5

Information-theoretic MACs
from VOLE

ZK from VOLE: Mac’n’Cheese and
friends

Optimized proofs for
disjunctive statements

Non-interactive;
streaming

A2B: arithmetic/binary
conversions

VOLE as information-theoretic MACs

● View 𝑀! as MAC on 𝑎! under key (Δ, 𝐾!)

● If Bob tries to open to 𝑎!" = 𝑎! + 𝑒:

○ Finding valid MAC 𝑀′ implies 𝑀" −𝑀# ⋅ 𝑒$% = Δ

○ Succeeds with pr. 1/𝑞
7

VOLE
Δ ← 𝔽&
𝐾# ← 𝔽&

𝑎# ∈ 𝔽&
𝑀# = 𝐾# + 𝑎#Δ

VOLE as information-theoretic MACs
v MAC can be seen as a commitment to 𝑎!:

Write [𝑎!]

v MACs are linearly homomorphic:

Ø Given 𝑎 , [𝑏], P and V can locally compute 𝑎 + 𝑏 ⋅ 𝑐 + 𝑑

v What about small fields, like 𝔽#?

○ Use subfield VOLE: 𝑀 = 𝐾 + 𝑎Δ where 𝑎 ∈ 𝔽' and 𝑀,𝐾, Δ ∈ 𝔽'!

8

Commit & Prove Protocols: instruction set
Commit (𝑥) → [𝑥]:
o Take $-VOLE element [𝑟]
o P sends 𝑑 = 𝑥 − 𝑟
o Let 𝑥 := 𝑟 + 𝑑

Open([𝑥]) → 𝑥:
o P sends 𝑥
o AssertZero(𝑥 − 𝑥)

AssertZero(𝑎$, … , [𝑎%]):
o V sends random 𝜒$, … , 𝜒% ∈ 𝔽
o P sends 𝜒$𝑀$ +⋯+ 𝜒%𝑀%
o V checks MAC 9

Mac’n’Cheese: Commit-and-Prove style ZK

MAC the input: Commit(𝑤$), …, Commit(𝑤&) → 𝑤$, … , [𝑤&]

● Evaluate circuit gate-by-gate

● Linear gates: easy

● Multiply([𝑥], [𝑦])
○ Commit (𝑧) (for 𝑧 = 𝑥𝑦)
○ Run verification to check that 𝑧 = 𝑥𝑦

● Output wire [𝑧]: AssertZero([𝑧])
10

[BMRS 21]

Multiplication in Mac’N’Cheese: simple version

v For each product 𝑥 , 𝑦 , [𝑧]
○ P commits to [𝑐] (= [𝑎𝑦]) for random [𝑎]
○ V sends random challenge 𝑒 ∈ 𝔽
○ 𝑑 = Open(𝑒 ⋅ [𝑥] − [𝑎])
○ AssertZero(𝑒 ⋅ 𝑧 − 𝑐 − 𝑑 ⋅ [𝑦])

Soundness:
o Passing AssertZero implies

𝑐 − 𝑎𝑦 = 𝑒 ⋅ (𝑧 − 𝑥𝑦)

o If 𝑧 − 𝑥𝑦 ≠ 0, have guessed 𝑒

Cost: P sends 3 field elements (for [𝑧], [𝑐] and 𝑑)
11

[BMRS 21]

Multiplication in Mac’N’Cheese: fancy version

v Batch verify (𝑥! , 𝑦! , [𝑧!]), for 𝑖 = 1,… , |𝐶|

Ø Use polynomial based method from fully-linear IOPs [BBCGI 19]

Ø Cost: 𝑂(log 𝐶) rounds and communication

12

[BMRS 21]

Mac’N’Cheese: Simple vs Fancy

13

● Communication: 𝑤 + 3 𝐶 vs. 𝑤 + 𝐶 + 𝑂(log |𝐶|)
(ignoring $-VOLE)

● Computation: 𝑂(𝐶)

● Rounds: 1 vs. 𝑂(log 𝐶)

Streaming zero-knowledge proofs
v For complex programs, storing circuit in memory is infeasible

Ø E.g. 10s of billions of gates ⇒ hundreds of GB

v Streaming Mac’N’Cheese?

Ø Fancy: requires batch verification L

Ø Simple: batch AssertZero at end L

v What if we verify in smaller batches?

Ø Worse round complexity L

14

Streaming with Mac’n’Cheese: Fiat-Shamir
v Ideally: want to stream proof while being non-interactive

Ø Fiat-Shamir: take care when using on multi-round protocol

Ø Worst-case, F-S soundness degrades exponentially with # rounds

v Mac’n’Cheese satisfies round-by-round soundness [CCHLRR 19]

Ø Soundness error ≈ 𝑄/|𝔽| for 𝑄 random oracle queries

(independent of round complexity!)

v Gives streamable designated-verifier NIZK (with $-VOLE preprocessing)
15

Disjunctions in
Commit-and-Prove Systems

16

Disjunctions

17

⊕ ⊗ ⊕

⊗ ⊗

⊕

𝑦%

⊕ ⊗ ⊕

⊗ ⊗

⊕

𝑦(
if or

𝑦 = 𝑦% ∨ ⋯∨ 𝑦)

Classic approach:
OR proof [CDS 94]

…

Optimizing Disjunctions
● Want to communicate only information proportional to the longest branch

● Key observation:

- Prover’s messages in proving 𝐶𝑖(𝑤) are all random elements, or AssertZero

- Given random elements, Verifier doesn’t know whether they’re for C1 or C2.

- Only send messages of true branch! ⟹ Verifier uses same messages to evaluate
both.

18

Problem: how to AssertZero in the right branch?
Solution: small “OR proof” to check 1-out-of-𝑚
sets of AssertZero

Disjunctive proofs in Mac’n’Cheese
Prove disjunction of clauses C1, …, Cm where Ci = 1

- Prover runs protocol for Ci
- Verifier sends random challenges (as normal)
- End of protocol:

○ P needs to prove [zi] = 0, but V shouldn’t know i!
○ Idea: Both parties can define all possible commitments [z1], …, [zm]

■ All values “garbage” except for zi
○ Run OR proof to show that ∃i such that zi = 0 [CDS94]

Overall communication: O(max(Cj)) + O(m)
- Naive approach: O(ΣCj)
- ⟹ Up to a factor m savings!

19

Optimizing Disjunctions: Summary
Disjunctions can be optimized for any linear IOP-like protocol
● Recently, also certain sigma protocols [GGHK21]

Also support threshold disjunctions for
satisfying k-out-of-𝑚 clauses 𝐶$, … , 𝐶%:

Communication: k ⋅ max(𝐶') + 𝑂(𝑚)
● Naïve: ∑|𝐶*|

Disjunctions inside disjunctions (inside disjunctions…)
● 𝑂(𝑚) becomes 𝑂(log𝑚)

20

● Line-point ZK [DIO 21], QuickSilver [YSWW 21]

Ø Non-black box use of VOLE

Ø Idea: locally multiplying MACs gives a quadratic relation in key Δ

𝑐 is a valid MAC iff 𝑧 = 𝑥𝑦

Ø Batch MAC check ⇒ batch mult. check with 𝑂(1) communication!

ZK from VOLE: other approaches

21

𝑥 , 𝑦 , 𝑧 [𝑐]

Comparing Performance of VOLE-based protocols

22

Mmps: millions of mults per sec

Conversions in ZK protocols

23

Appenzeller to Brie: Efficient conversions between 𝔽", 𝔽# and ℤ"!
[Baum, Braun, Munch-Hansen, Razet, S ‘21]

Efficient conversion with Appenzeller2Brie

Motivation:
Proof systems only support input in 𝔽# or 𝔽(
Certain circuits are simpler over other field

24

Ideally: convert to the most efficient data
format for each task during the proof

The problem

1. Integer multiplication has a large binary circuit

2. Comparison/truncation expensive to emulate in 𝔽(
25

Performance metric:
#AND/multiplications

𝔽' 𝔽+

⊕ ⊗

⊗

+ ×

×

Appenzeller2Brie in a nutshell

26

Mac’n’Cheese
over 𝔽'

Mac’n’Cheese
over 𝔽+

A2B:
Is the
same!

Π

We require 𝑝 > 2),%, approach works for bounded 𝑥

Use “EdaBits”, similar to [EGK+20,WYX+21]

𝑥" , … , [𝑥#] [𝑥]

Π′

Appenzeller2Brie in a nutshell

27

Mac’n’Cheese
over 𝔽'

Mac’n’Cheese
over 𝔽+

Similar to “EdaBits”, used in [EGK+20,WYX+21]

𝑥" , … , [𝑥#]
[𝑥]

𝑦" , … , [𝑦#]𝑦" , … , [𝑦#]𝑦" , … , [𝑦#]𝑦"$, … , [𝑦#$]

Idea:
P opens 𝑥 + 𝑒 ⋅ 𝑦*

in both worlds
[𝑦][𝑦][𝑦][𝑦$]

Problems:
1. 𝑒 ∈ 0,1 only gives soundness ½
2. Larger 𝑒 is expensive in binary world

A2B: summary
● Instead of randomizing with challenge 𝑒, use cut-and-choose

○ Place random conversion tuples into buckets, open small fraction

● Cost: ≈ 𝐵 addition circuits for buckets of size 𝐵 ≥ 3

● Optimizations, extensions:

○ Binary circuits for checking conversions allowed to be faulty

○ Use to verify truncations and comparisons

28

Zero-Knowledge over ℤ!(
Mac’n’Cheese does not work over ℤ#! naively.

Solution 1: Emulate operations over 𝔽# (done in QuickSilver)
Solution 2: Extend Mac‘n‘Cheese to ℤ#!

Problems:
1. MAC and multiplication check fails due to zero divisors
2. VOLE not efficient for ℤ#!

A2B: solves (1) using SPDZ2k tricks. (2): still open!

29

Conclusion
● VOLE ⇒ information-theoretic MACs

○ Powerful for lightweight and scalable zero-knowledge with low memory costs

● “Stacked” OR proof technique

○ Optimizes disjunctions in many settings

● Appenzeller to Brie

○ Conversion gadgets for 𝔽', 𝔽+ and ℤ'!

30

Open questions
● Sublinear proofs for general circuits

○ Succinct vector commitments from VOLE?

● Beyond designated verifier

○ Some recent progress for multi-verifier setting (2022/082 and 2022/063)

● Improve conversions and ℤ#! support

31

Thank you!

