
(Vector) Oblivious Linear Evaluation:
Basic Constructions and Applications

Peter Scholl
24 January 2022, Bar-Ilan Winter School

This talk

Peter Scholl 3

(V)OLE

What is it?

What’s it good for?

How do you build it?

Conclusion

oblivious transfer

Oblivious PRF

VOLE

OLE

homomorphic encryption

correlated
randomness

variants

active security

Oblivious linear evaluation (OLE)

Input: 𝑥 ∈ ℤ!

𝑦 = 𝑎𝑥 + 𝑏
5

Input:
𝑎, 𝑏 ∈ ℤ!

OLE functionality

⋮

Output: 𝑦 = 𝑎𝑥 + 𝑏

𝑥 ∈ ℤ! 𝑎, 𝑏 ∈ ℤ!

OLE is secret-shared multiplication

6

𝑦

OLE

𝑥 𝑎, 𝑏

Input: 𝑥 ∈ ℤ! Input:
𝑎 ∈ ℤ!
𝑏 ← ℤ!

𝑦 − 𝑏 = 𝑎𝑥

Variants: random-OLE, vector-OLE

7

𝑦 = 𝑎𝑥 + 𝑏
OLE

𝑥 ∈ ℤ! 𝑎, 𝑏 ∈ ℤ!

𝑥 ← ℤ!
𝑦 = 𝑎𝑥 + 𝑏 $-OLE

𝑎, 𝑏 ← ℤ!

�⃗� = �⃗�𝑥 + 𝑏
VOLE

𝑥 ∈ ℤ! �⃗�, 𝑏 ∈ ℤ!"

A few basic observations

v VOLE is easier to build than 𝑛 × OLE

v $-(V)OLE is enough

v Public-key crypto is necessary [IR 89]

8

𝑛 × OLE 1× VOLE⇒
⇐

(unconditional, passive security)

$-OLE OLE⇒ (unconditional, send 3 ℤ! elem.)

OLE
Oblivious
Transfer⇒ (unconditional)

Motivation: Secure Computation with
Preprocessing

Preprocessing

𝑦𝑥
Online phase

𝑓(𝑥, 𝑦)

Correlated randomness

[Beaver ’91]

Peter Scholl 9

• Information-theoretic
• Cheap computation

Example: multiplication triples from OLE

10

2x $-OLE𝑥, 𝑥", 𝑦, 𝑦′ 𝑎, 𝑎", 𝑏, 𝑏′

𝑦 − 𝑏 = 𝑎𝑥
𝑦" − 𝑏′ = 𝑎"𝑥"

𝑥 + 𝑎′ ⋅ 𝑥! + 𝑎 = 𝑥𝑥! + 𝑎𝑎! + 𝑎𝑥 + 𝑎!𝑥′

𝑢 ⋅ 𝑣 = 𝑤

(V)OLE for correlated randomness
v Scalar/vector triples, matrix triples

○ Build from VOLE

v Multi-party correlations:

○ From pairwise instances of (V)OLE

○ Other approaches: depth-1 homomorphic encryption [DPSZ 12]

v Authenticated secret shares:

○ Use VOLE to generate information-theoretic MACs

○ Key part of SPDZ protocols [DPSZ 12, KOS 16, KPR 18, …] 11

Application: Oblivious Pseudorandom Functions

14

𝑏 ← 0,1
𝐾 ← 0,1 !

𝑦" = 𝐹(𝐾, 𝑥)
𝑦# = $(𝑥)

𝑥

𝑦+

Guess 𝑏

𝐾 𝑥
⋮

𝐹(𝐾, 𝑥)

Oblivious PRFPRF 𝐹

𝐹(𝐾, 𝑦) remains
pseudorandom for any 𝑦 ≠ 𝑥

Vector-OLE ⇒ Batch OPRF evaluation

16

VOLE
𝑠 ← 𝔽1

𝑡2 = 𝑎2𝑠 + 𝑏2

𝑎2 ∈ 𝔽1
𝑏2 ← 𝔽1

𝐹 𝐾, , 𝑎, ≔ 𝐻(𝑡, − 𝑎,𝑠)
Keys 𝐾2: = 𝑠, 𝑡2 2

v Relaxed OPRF: related keys, leakage
v Secure if 𝐻 is a random oracle
• Or variant of correlation-robustness

Output 𝐻(𝑏")

[BCGIKS 19]

Random Vector-OLE ⇒ Batch OPRF evaluation

17

$-VOLE
𝑠 ← 𝔽1

𝑡2′ = 𝑟2𝑠 + 𝑏2

𝑟2 ← 𝔽1
𝑏2 ← 𝔽1

𝑡2 = 𝑡23 + 𝑑2𝑠
Keys 𝐾2: = 𝑠, 𝑡2 2 Output 𝐻(𝑏")

𝑑2 = 𝑎2 − 𝑟2

v Optimal communication: 1 𝔽1 element
Ø (given $-VOLE)

Applications of OPRF
v Random 1-out-of-𝑞 OT

○ Correlated randomness, e.g. masked truth tables [DKSSZZ 17]

v Password-authenticated key exchange, e.g. OPAQUE [JKX 18]

○ Batch OPRF seems less useful

v Private set intersection

○ Reducing use of public-key crypto [KKRT 16, KMPRT 17, …]

○ With polynomial-based encoding [GPRTY 21, Sec 7.1]

■ Simple protocol, communication: |input|
18

Constructing VOLE, “non-silently”

19

Taxonomy of VOLE protocols

20

Oblivious Transfer Homomorphic Encryption

OT
𝑠#, 𝑠$𝑏

𝑠%

+
vMostly based on LPN
vRequire “seed” VOLEs
to bootstrap

”Non-silent”

”Silent”

Enc
𝑥

Eval Dec
𝑓(𝑥)

(V)OLE from Oblivious Transfer

21

OT
𝑏& , 𝑏& + 𝑎𝑥$

𝑦$

𝑥 ∈ ℤ1 𝑎, 𝑏 ∈ ℤ1

Bit-decompose 𝑥 = ∑2789 22:8𝑥2

OT
𝑏', 𝑏' + 𝑎𝑥'

𝑦'

⋮

𝑦2 = 𝑏2 + 𝑎𝑥2
⇒ 𝑦 = 𝑏 + 𝑎𝑥

Output 𝑦 = ∑2 22:8𝑦2

Repeat for VOLE
[KOS 16]

[Gilboa 99]

Sample 𝑏2 ∈ ℤ1 s.t.
𝑏 = ∑2 22:8𝑏2 mod 𝑞

(V)OLE from Oblivious Transfer
v Perfectly secure

v Each output: 𝑚 = log 𝑞 calls to OT on 𝑚-bit strings

○ Computational cost: cheap via OT extension [IKNP 03]

○ Communication: ≥ 𝑚< bits

v Active security?

22

[Gilboa 99]

(V)OLE from Oblivious Transfer: active security?

23

OT
𝑏& , 𝑏& + 𝑎𝑥$

𝑦$

𝑥 ∈ ℤ1 𝑎, 𝑏 ∈ ℤ1

Bit-decompose 𝑥 = ∑2 22:8𝑥2

OT
𝑏', 𝑏' + 𝑎𝑥'

𝑦'

⋮

Output 𝑦 = ∑2 22:8𝑦2

Sample 𝑏2 ∈ ℤ1 s.t.
𝑏 = ∑2 22:8𝑏2 mod 𝑞Bob uses 𝑎" ≠ 𝑎:

Output becomes 𝑦 + 𝑎" − 𝑎 𝑥$

VOLE: lightweight correctness check

24

𝑥, 𝑦2 𝑎2, 𝑏2

Goal: check that 𝑦2 = 𝑎2𝑥 + 𝑏2, for all 𝑖

Random challenges 𝜒#, … , 𝜒$ ∈ ℤ%
𝑎∗ =-

$

𝜒$𝑎$, 𝑏∗ =-
$

𝜒$𝑏$

𝑦∗ = ∑𝜒"𝑦"
Check 𝑦∗ = 𝑎∗𝑥 + 𝑏∗

𝑎∗, 𝑏∗

Intuition:
• To pass check when 𝑦& is incorrect, Bob must guess 𝜒&
• Succeed with pr. 1/𝑝

+𝑎"%& +𝑏"%&
+𝑦"%&

Problems with selective failure
v Recall: corrupt Bob can induce error:

𝑦/ = 𝑦 + 𝑎/ − 𝑎 𝑥0
○ Error depends on secret bit 𝑥8!

○ Even if VOLE is correct, leaks that 𝑥8 = 0

v Solutions:

○ 1) Relaxed VOLE: allow small leakage on 𝑥 [KOS 16], [WYKW 21]

○ 2) Privacy amplification via leftover hash lemma [KOS 16]

25

(V)OLE from OT: Summary
v Simple protocol with lightweight computation

○ Leveraging fast OT extension techniques

v Expensive communication

○ At least 𝑚< bits, where 𝑚 = log 𝑞

v Active security almost for free

○ If leakage on 𝑥 is OK

26

VOLE from Homomorphic Encryption

27

Linearly homomorphic encryption

vPKE scheme (𝐾𝑒𝑦𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐), encrypts vectors over ℤ$

vLinear homomorphism:
ØCan compute �⃗� + 𝑏 or		𝑐 ⋅ [�⃗�],	for	𝑐 ∈ ℤ'$,	s.t.

Dec �⃗� + 𝑏 = �⃗� + 𝑏
Dec 𝑐 ⋅ �⃗� = 𝑐 ⋅ �⃗�

Peter Scholl 28

For �⃗� ∈ ℤ!(, write �⃗� ≔ Enc)*(�⃗�)

Component-wise
product

Examples of Linearly Homomorphic
Encryption
vPaillier encryption

ØEach ciphertext encrypts a ℤG element (𝑁 = 𝑝𝑞)

vDDH
ØElGamal in the exponent: poly-size plaintexts in ℤ
ØClass groups: ℤ! for large prime 𝑝 [CL 15]

vRing Learning With Errors (RLWE) [LPR 10]
ØNatively encrypts a vector in ℤ!9

Peter Scholl 29

More on Wednesday!

Naïve VOLE from Linearly Homomorphic
Encryption

Peter Scholl 30

𝑥 ∈ ℤ! �⃗�, 𝑏 ∈ ℤ!9

𝑝𝑘, [𝑥]

�⃗� = �⃗� ⋅ 𝑥 + [𝑏]

𝑝𝑘, 𝑠𝑘 ← 𝐺𝑒𝑛(1()

�⃗� = 𝐷𝑒𝑐)*(�⃗�)

Security:
• Alice: CPA security
• Bob: circuit privacy

Circuit privacy in homomorphic encryption

vIn RLWE, message hidden by “noise”:

vAfter computing �⃗� ⋅ 𝑥 + [𝑏]:
ØNoise depends on �⃗� and 𝑏

vClassic solution:
Ø“Noise flooding”
ØRequires much larger ciphertexts

Peter Scholl 31

message

noise 𝑒
(removed in decryption)

extra noise ≫ 𝑎 ⋅ 𝑒 + 𝑏

𝑎 ⋅ 𝑒 + 𝑏

Optimization: ”Gentle noise flooding” [dCHIV 21]
• Encrypt 𝑡-out-of-𝑛 sharing of message
• A few leaked coordinates don’t matter

What about active security?

vWhat can go wrong?
ØAlice/Bob could send garbage ciphertexts…

vWhat about correctness check as in OT?
ØSelective failure is more subtle
ØError may depend on ciphertext noise/secret key

vSolution: zero-knowledge proofs
ØAlice: proof of plaintext knowledge
ØBob: proof of correct multiplication

Peter Scholl 32

ZK proofs for homomorphic encryption

vRLWE is more challenging than number-theoretic assumptions

vProof of plaintext knowledge
ØNaïve sigma protocol: soundness ½
ØVarious optimizations [BCS 19], amortization [BBG 19]
ØStill computationally expensive, often need larger parameters

vProof of correct multiplication
ØEven worse! Tricky to amortize
ØCan be avoided, assuming linear-only encryption [BISW 18, KPR 18]

Peter Scholl 33

Conclusion: Basic constructions and applications
v OLE and VOLE are core building blocks of secure computation

○ Correlated randomness

○ Special-purpose applications like OPRF, private set intersection

○ Next talk: zero knowledge

v Non-silent protocols: OT, AHE

○ Important, even if silent protocols win J

○ Open question: improving RLWE parameters and efficiency

■ Especially for active security
34

Thank you!

Peter Scholl 35

