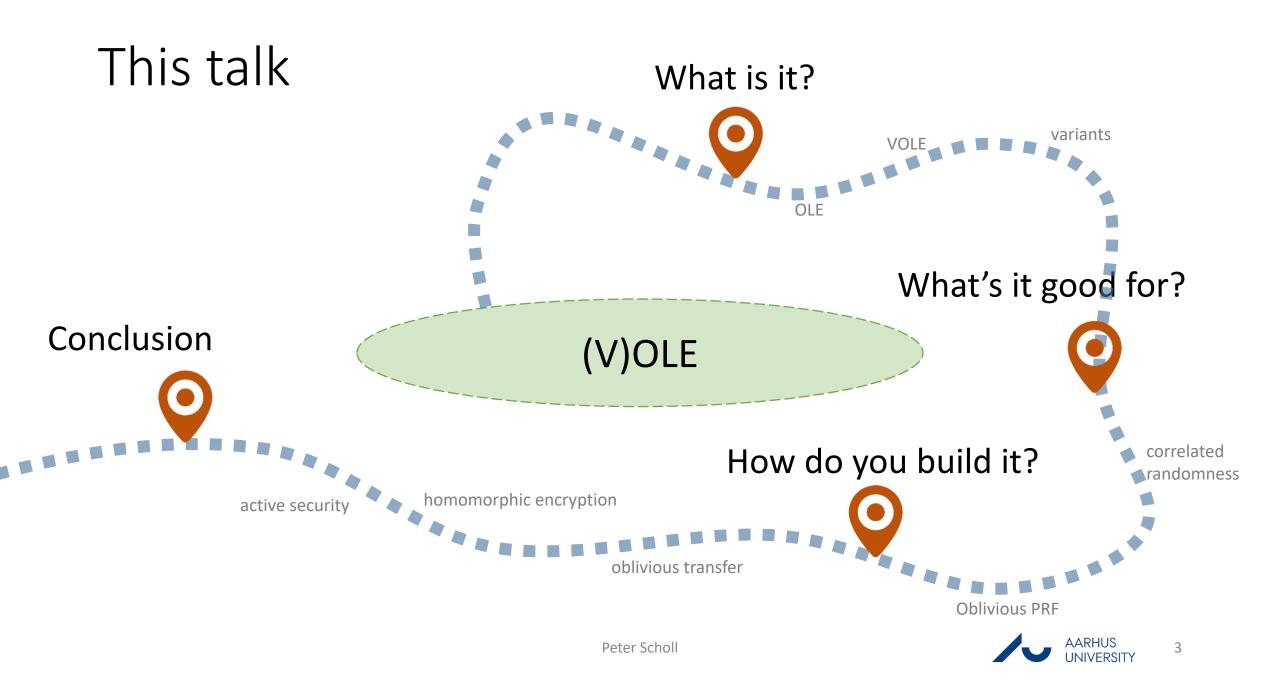
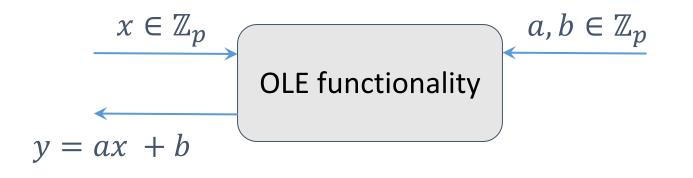
(Vector) Oblivious Linear Evaluation: Basic Constructions and Applications

Peter Scholl

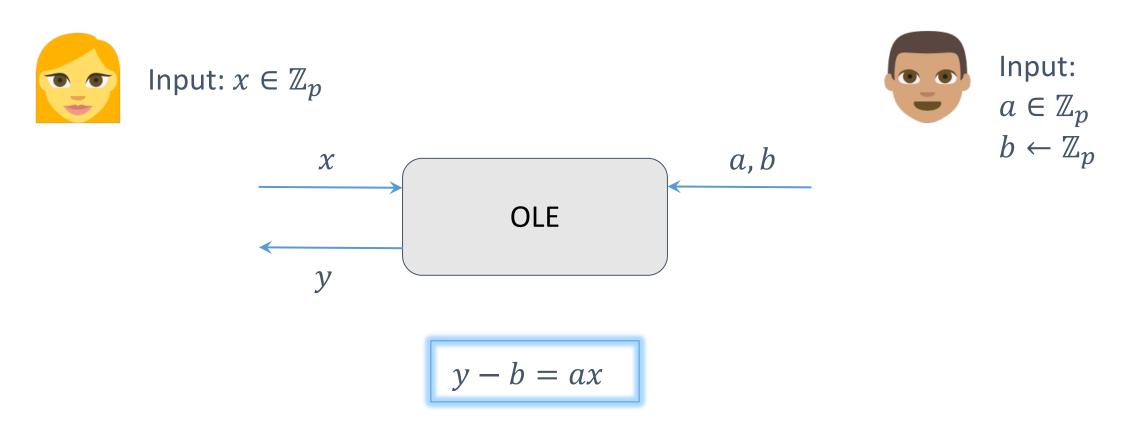
24 January 2022, Bar-Ilan Winter School



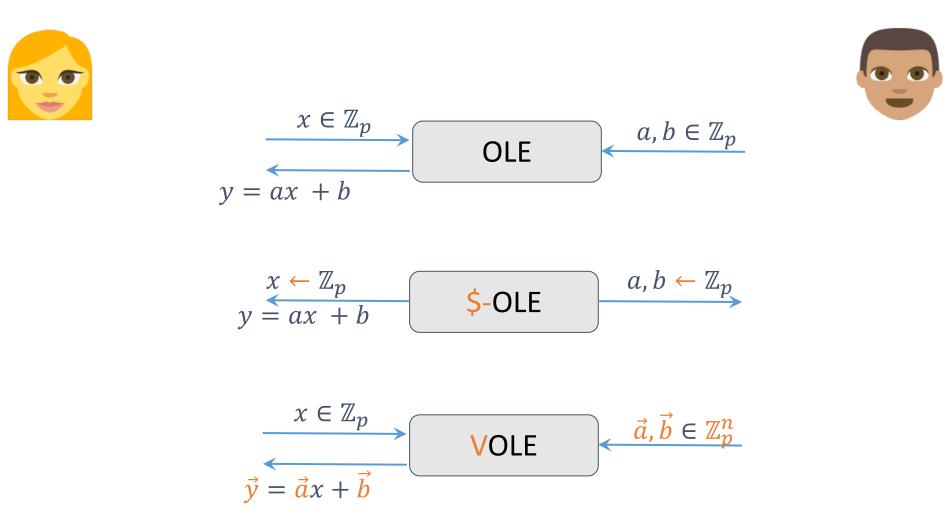
Oblivious linear evaluation (OLE)



OLE is secret-shared multiplication

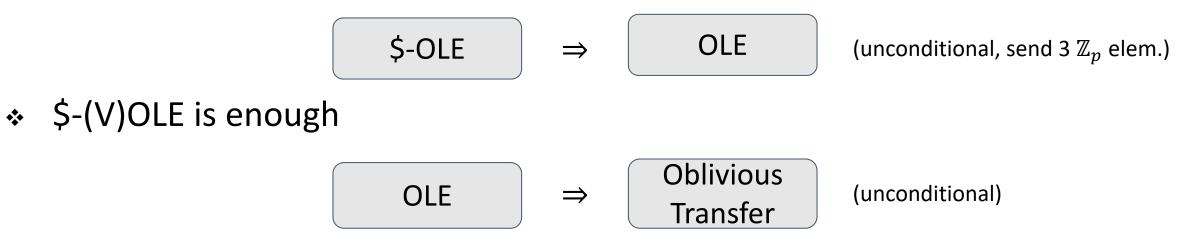


Variants: random-OLE, vector-OLE



A few basic observations

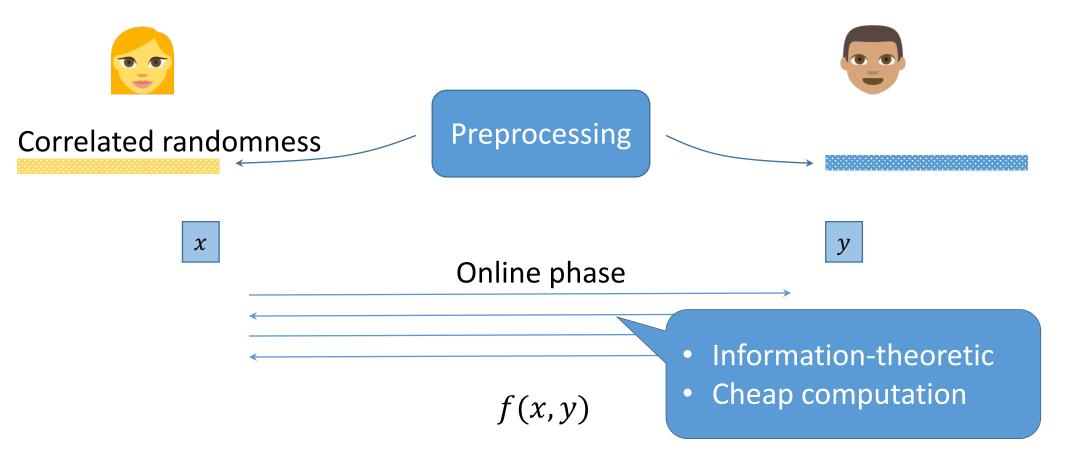
* VOLE is easier to build than $n \times OLE$



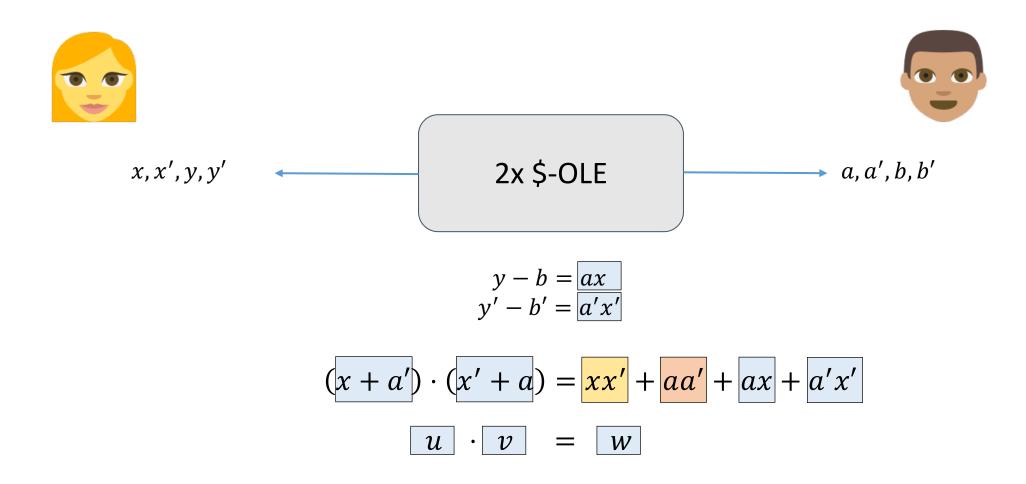
Public-key crypto is necessary [IR 89]

Motivation: Secure Computation with Preprocessing

[Beaver '91]



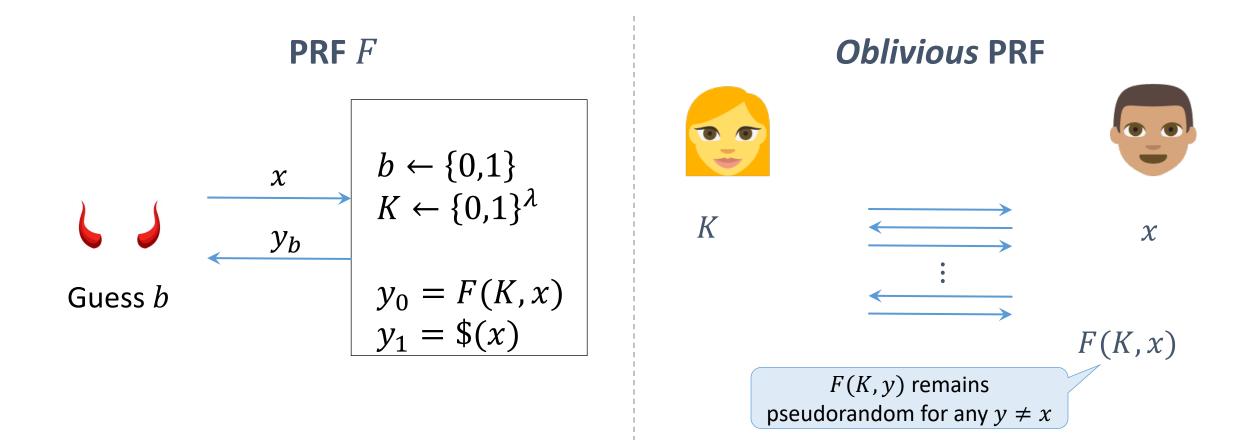
Example: multiplication triples from OLE



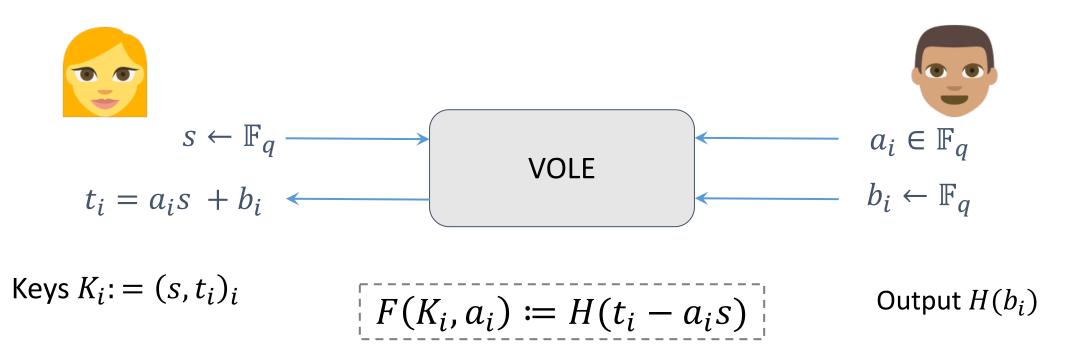
(V)OLE for correlated randomness

- Scalar/vector triples, matrix triples
 - Build from VOLE
- Multi-party correlations:
 - From pairwise instances of (V)OLE
 - Other approaches: depth-1 homomorphic encryption [DPSZ 12]
- Authenticated secret shares:
 - Use VOLE to generate information-theoretic MACs
 - Key part of SPDZ protocols [DPSZ 12, KOS 16, KPR 18, ...]

Application: Oblivious Pseudorandom Functions



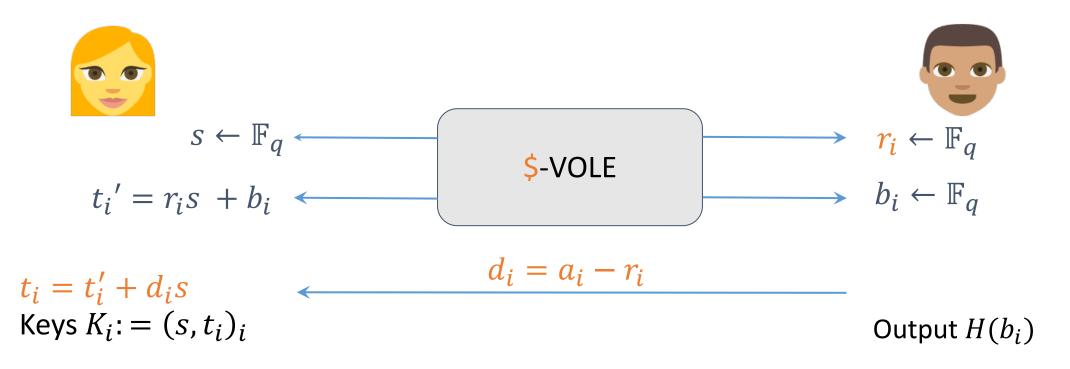
Vector-OLE \Rightarrow Batch OPRF evaluation [BCGIKS 19]



Relaxed OPRF: related keys, leakage
Secure if *H* is a random oracle

• Or variant of correlation-robustness

Random Vector-OLE ⇒ Batch OPRF evaluation



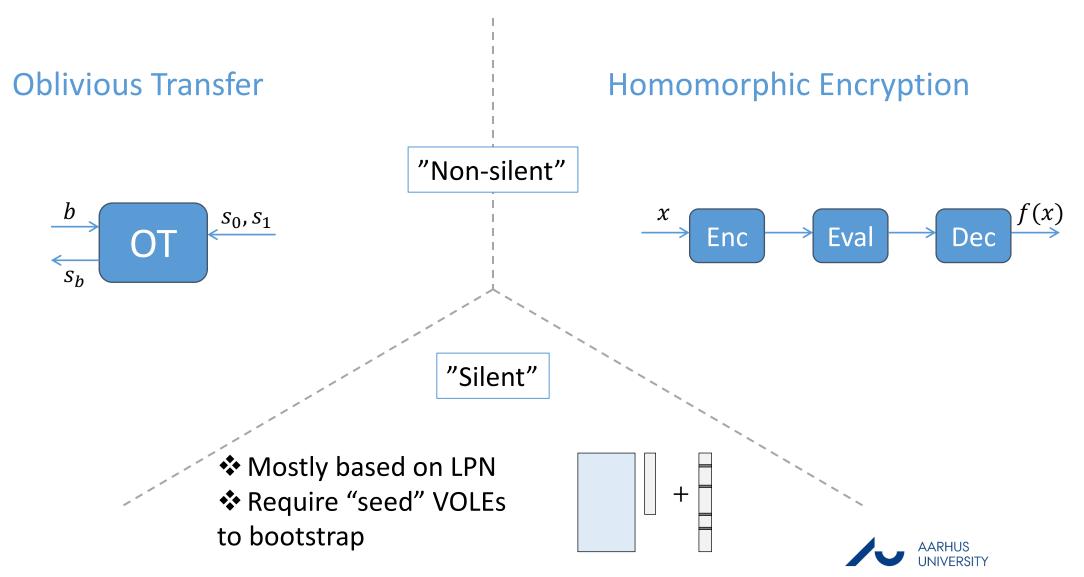
♦ Optimal communication: 1 \mathbb{F}_q element
> (given \$-VOLE)

Applications of OPRF

- Random 1-out-of-q OT
 - Correlated randomness, e.g. masked truth tables [DKSSZZ 17]
- Password-authenticated key exchange, e.g. OPAQUE [JKX 18]
 - Batch OPRF seems less useful
- Private set intersection
 - Reducing use of public-key crypto [KKRT 16, KMPRT 17, ...]
 - With polynomial-based encoding [GPRTY 21, Sec 7.1]
 - Simple protocol, communication: |input|

Constructing VOLE, "non-silently"

Taxonomy of VOLE protocols



(V)OLE from Oblivious Transfer [Gilboa 99]

$$x \in \mathbb{Z}_{q}$$
Bit-decompose $x = \sum_{i=1}^{m} 2^{i-1}x_{i}$

$$x_{1} \quad otop_{y_{i}} \quad b_{i}, b_{i} + a$$

$$y_{1} \quad otop_{y_{i}} \quad b_{m}, b_{m} + a$$

$$y_{m} \quad otop_{y_{m}} \quad b_{m}, b_{m} + a$$

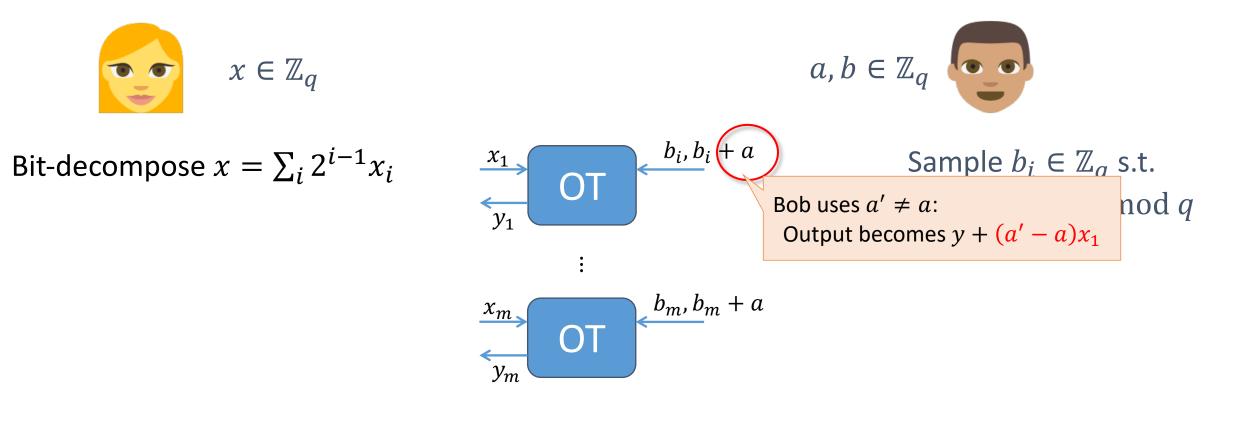
$$y_{m} \quad b_{m}, b_{m} + a$$

$$y_{m} \quad b_{m} + a$$

(V)OLE from Oblivious Transfer [Gilboa 99]

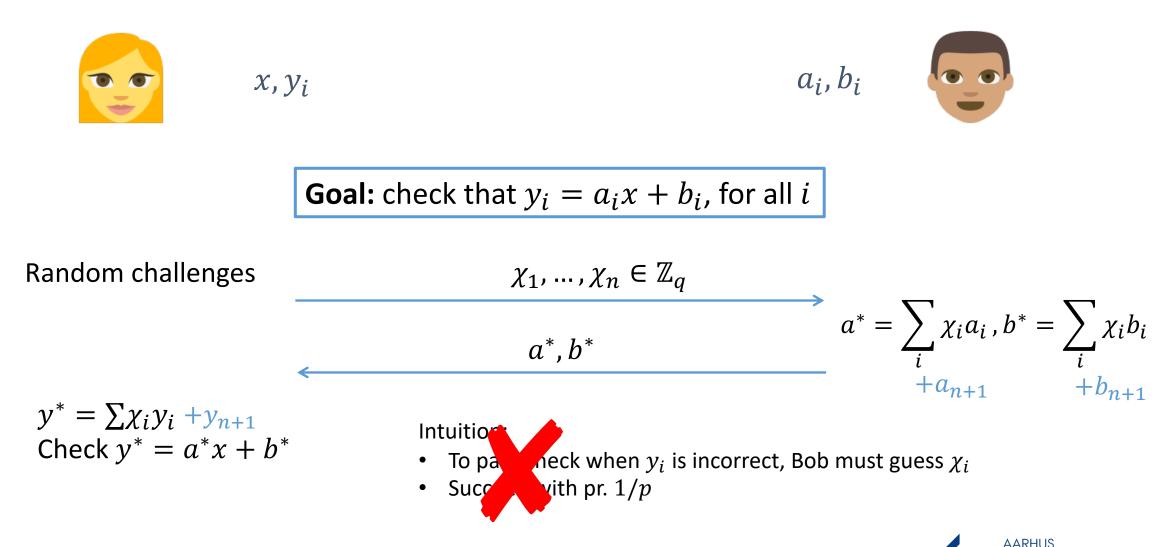
- ✤ Perfectly secure
- * Each output: $m = \log q$ calls to OT on m-bit strings
 - Computational cost: cheap via OT extension [IKNP 03]
 - Communication: $\geq m^2$ bits
- Active security?

(V)OLE from Oblivious Transfer: active security?



Output
$$y = \sum_i 2^{i-1} y_i$$

VOLE: lightweight correctness check



Problems with selective failure

- * Recall: corrupt Bob can induce error: $y' = y + (a' - a)x_1$
 - Error depends on secret bit x_1 !
 - Even if VOLE is correct, leaks that $x_1 = 0$
- Solutions:
 - 1) Relaxed VOLE: allow small leakage on *x* [KOS 16], [WYKW 21]
 - 2) Privacy amplification via leftover hash lemma [KOS 16]

(V)OLE from OT: Summary

- Simple protocol with lightweight computation
 - Leveraging fast OT extension techniques
- Expensive communication
 - At least m^2 bits, where $m = \log q$
- Active security almost for free
 - If leakage on x is OK

VOLE from Homomorphic Encryption

Linearly homomorphic encryption

↔ PKE scheme (*KeyGen*, *Enc*, *Dec*), encrypts vectors over \mathbb{Z}_p

For $\vec{a} \in \mathbb{Z}_p^n$, write $[\vec{a}] \coloneqq \operatorname{Enc}_{\mathrm{pk}}(\vec{a})$

Linear homomorphism:

≻ Can compute $[\vec{a}] + [\vec{b}]$ or $\vec{c} \cdot [\vec{a}]$, for $\vec{c} \in \mathbb{Z}_p^n$, s.t.

$$Dec([\vec{a}] + [\vec{b}]) = \vec{a} + \vec{b}$$
$$Dec(\vec{c} \cdot [\vec{a}]) = \vec{c} \cdot \vec{a}$$
Component-wise product

Examples of Linearly Homomorphic Encryption

Paillier encryption

More on Wednesday!

Each ciphertext encrypts a \mathbb{Z}_N element (N = pq)

DDH

 \succ ElGamal in the exponent: poly-size plaintexts in $\mathbb Z$

 \succ Class groups: \mathbb{Z}_p for large prime p [CL 15]

Ring Learning With Errors (RLWE) [LPR 10]

 \succ Natively encrypts a vector in \mathbb{Z}_p^m

Naïve VOLE from Linearly Homomorphic Encryption

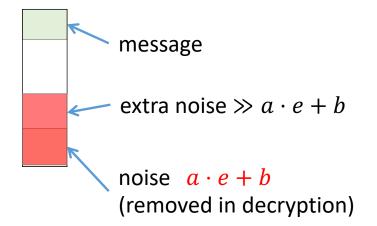
 $x \in \mathbb{Z}_p$ $\vec{a}, \vec{b} \in \mathbb{Z}_p^m$ *pk*, [*x*] $pk, sk \leftarrow Gen(1^{\lambda})$ $[\vec{y}] = \vec{a} \cdot [x] + [\vec{b}]$ $\vec{y} = Dec_{sk}([\vec{y}])$ **Security:** Alice: CPA security

• Bob: circuit privacy

Circuit privacy in homomorphic encryption

In RLWE, message hidden by "noise":

☆After computing $\vec{a} \cdot [x] + [\vec{b}]$:
Noise depends on \vec{a} and \vec{b}



Classic solution:

➤"Noise flooding"

➢ Requires much larger ciphertexts

Optimization: "Gentle noise flooding" [dCHIV 21]

- Encrypt *t*-out-of-*n* sharing of message
- A few leaked coordinates don't matter

What about active security?

What can go wrong?

➢Alice/Bob could send garbage ciphertexts...

What about correctness check as in OT?
 Selective failure is more subtle
 Error may depend on ciphertext noise/secret key

Solution: zero-knowledge proofs

Alice: proof of plaintext knowledgeBob: proof of correct multiplication

ZK proofs for homomorphic encryption

RLWE is more challenging than number-theoretic assumptions

Proof of plaintext knowledge

Naïve sigma protocol: soundness ½
 Various optimizations [BCS 19], amortization [BBG 19]

Still computationally expensive, often need larger parameters

Proof of correct multiplication

➢ Even worse! Tricky to amortize

Can be avoided, assuming linear-only encryption [BISW 18, KPR 18]

Conclusion: Basic constructions and applications

- ✤ OLE and VOLE are core building blocks of secure computation
 - Correlated randomness
 - Special-purpose applications like OPRF, private set intersection
 - Next talk: zero knowledge
- Non-silent protocols: OT, AHE
 - Important, even if silent protocols win ☺
 - Open question: improving RLWE parameters and efficiency
 - Especially for active security

Thank you!

Peter Scholl