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Oblivious linear evaluation (OLE)

Input: 𝑥 ∈ ℤ!

𝑦 = 𝑎𝑥 + 𝑏
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Input:
𝑎, 𝑏 ∈ ℤ!

OLE functionality

⋮

Output: 𝑦 = 𝑎𝑥 + 𝑏

𝑥 ∈ ℤ! 𝑎, 𝑏 ∈ ℤ!



OLE is secret-shared multiplication
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𝑦

OLE

𝑥 𝑎, 𝑏

Input: 𝑥 ∈ ℤ! Input:
𝑎 ∈ ℤ!
𝑏 ← ℤ!

𝑦 − 𝑏 = 𝑎𝑥



Variants: random-OLE, vector-OLE
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𝑦 = 𝑎𝑥 + 𝑏
OLE

𝑥 ∈ ℤ! 𝑎, 𝑏 ∈ ℤ!

𝑥 ← ℤ!
𝑦 = 𝑎𝑥 + 𝑏 $-OLE

𝑎, 𝑏 ← ℤ!

𝑦⃗ = 𝑎⃗𝑥 + 𝑏
VOLE

𝑥 ∈ ℤ! 𝑎⃗, 𝑏 ∈ ℤ!"



A few basic observations

v VOLE is easier to build than 𝑛 × OLE

v $-(V)OLE is enough

v Public-key crypto is necessary [IR 89]
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𝑛 × OLE 1× VOLE⇒
⇐

(unconditional, passive security)

$-OLE OLE⇒ (unconditional, send 3 ℤ! elem.)

OLE
Oblivious 
Transfer⇒ (unconditional)



Motivation: Secure Computation with 
Preprocessing

Preprocessing

𝑦𝑥
Online phase

𝑓(𝑥, 𝑦)

Correlated randomness

[Beaver ’91]
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• Information-theoretic
• Cheap computation



Example: multiplication triples from OLE
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2x $-OLE𝑥, 𝑥", 𝑦, 𝑦′ 𝑎, 𝑎", 𝑏, 𝑏′

𝑦 − 𝑏 = 𝑎𝑥
𝑦" − 𝑏′ = 𝑎"𝑥"

𝑥 + 𝑎′ ⋅ 𝑥! + 𝑎 = 𝑥𝑥! + 𝑎𝑎! + 𝑎𝑥 + 𝑎!𝑥′

𝑢 ⋅ 𝑣 = 𝑤



(V)OLE for correlated randomness
v Scalar/vector triples, matrix triples

○ Build from VOLE

v Multi-party correlations:

○ From pairwise instances of (V)OLE

○ Other approaches: depth-1 homomorphic encryption [DPSZ 12]

v Authenticated secret shares:

○ Use VOLE to generate information-theoretic MACs

○ Key part of SPDZ protocols [DPSZ 12, KOS 16, KPR 18, …] 11



Application: Oblivious Pseudorandom Functions
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𝑏 ← 0,1
𝐾 ← 0,1 !

𝑦" = 𝐹(𝐾, 𝑥)
𝑦# = $(𝑥)

𝑥

𝑦+

Guess 𝑏

𝐾 𝑥
⋮

𝐹(𝐾, 𝑥)

Oblivious PRFPRF 𝐹

𝐹(𝐾, 𝑦) remains 
pseudorandom for any 𝑦 ≠ 𝑥



Vector-OLE ⇒ Batch OPRF evaluation
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VOLE
𝑠 ← 𝔽1

𝑡2 = 𝑎2𝑠 + 𝑏2

𝑎2 ∈ 𝔽1
𝑏2 ← 𝔽1

𝐹 𝐾, , 𝑎, ≔ 𝐻(𝑡, − 𝑎,𝑠)
Keys 𝐾2: = 𝑠, 𝑡2 2

v Relaxed OPRF: related keys, leakage
v Secure if 𝐻 is a random oracle
• Or variant of correlation-robustness

Output 𝐻(𝑏")

[BCGIKS 19]



Random Vector-OLE ⇒ Batch OPRF evaluation
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$-VOLE
𝑠 ← 𝔽1

𝑡2′ = 𝑟2𝑠 + 𝑏2

𝑟2 ← 𝔽1
𝑏2 ← 𝔽1

𝑡2 = 𝑡23 + 𝑑2𝑠
Keys 𝐾2: = 𝑠, 𝑡2 2 Output 𝐻(𝑏")

𝑑2 = 𝑎2 − 𝑟2

v Optimal communication: 1 𝔽1 element
Ø (given $-VOLE)



Applications of OPRF
v Random 1-out-of-𝑞 OT

○ Correlated randomness, e.g. masked truth tables [DKSSZZ 17]

v Password-authenticated key exchange, e.g. OPAQUE [JKX 18]

○ Batch OPRF seems less useful

v Private set intersection

○ Reducing use of public-key crypto [KKRT 16, KMPRT 17, …]

○ With polynomial-based encoding [GPRTY 21, Sec 7.1] 

■ Simple protocol, communication: |input|
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Constructing VOLE, “non-silently”
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Taxonomy of VOLE protocols
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Oblivious Transfer Homomorphic Encryption

OT
𝑠#, 𝑠$𝑏

𝑠%

+
vMostly based on LPN
vRequire “seed” VOLEs
to bootstrap

”Non-silent”

”Silent”

Enc
𝑥

Eval Dec
𝑓(𝑥)



(V)OLE from Oblivious Transfer
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OT
𝑏& , 𝑏& + 𝑎𝑥$

𝑦$

𝑥 ∈ ℤ1 𝑎, 𝑏 ∈ ℤ1

Bit-decompose 𝑥 = ∑2789 22:8𝑥2

OT
𝑏', 𝑏' + 𝑎𝑥'

𝑦'

⋮

𝑦2 = 𝑏2 + 𝑎𝑥2
⇒ 𝑦 = 𝑏 + 𝑎𝑥

Output 𝑦 = ∑2 22:8𝑦2

Repeat for VOLE
[KOS 16]

[Gilboa 99]

Sample 𝑏2 ∈ ℤ1 s.t.
𝑏 = ∑2 22:8𝑏2 mod 𝑞



(V)OLE from Oblivious Transfer
v Perfectly secure

v Each output: 𝑚 = log 𝑞 calls to OT on 𝑚-bit strings

○ Computational cost: cheap via OT extension [IKNP 03]

○ Communication: ≥ 𝑚< bits

v Active security?
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[Gilboa 99]



(V)OLE from Oblivious Transfer: active security?
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OT
𝑏& , 𝑏& + 𝑎𝑥$

𝑦$

𝑥 ∈ ℤ1 𝑎, 𝑏 ∈ ℤ1

Bit-decompose 𝑥 = ∑2 22:8𝑥2

OT
𝑏', 𝑏' + 𝑎𝑥'

𝑦'

⋮

Output 𝑦 = ∑2 22:8𝑦2

Sample 𝑏2 ∈ ℤ1 s.t.
𝑏 = ∑2 22:8𝑏2 mod 𝑞Bob uses 𝑎" ≠ 𝑎:

Output becomes 𝑦 + 𝑎" − 𝑎 𝑥$



VOLE: lightweight correctness check
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𝑥, 𝑦2 𝑎2, 𝑏2

Goal: check that 𝑦2 = 𝑎2𝑥 + 𝑏2, for all 𝑖

Random challenges 𝜒#, … , 𝜒$ ∈ ℤ%
𝑎∗ =-

$

𝜒$𝑎$ , 𝑏∗ =-
$

𝜒$𝑏$

𝑦∗ = ∑𝜒"𝑦"
Check 𝑦∗ = 𝑎∗𝑥 + 𝑏∗

𝑎∗, 𝑏∗

Intuition:
• To pass check when 𝑦& is incorrect, Bob must guess 𝜒&
• Succeed with pr. 1/𝑝

+𝑎"%& +𝑏"%&
+𝑦"%&



Problems with selective failure
v Recall: corrupt Bob can induce error:

𝑦/ = 𝑦 + 𝑎/ − 𝑎 𝑥0
○ Error depends on secret bit 𝑥8!

○ Even if VOLE is correct, leaks that 𝑥8 = 0

v Solutions:

○ 1) Relaxed VOLE: allow small leakage on 𝑥 [KOS 16], [WYKW 21]

○ 2) Privacy amplification via leftover hash lemma [KOS 16]
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(V)OLE from OT: Summary
v Simple protocol with lightweight computation

○ Leveraging fast OT extension techniques

v Expensive communication

○ At least 𝑚< bits, where 𝑚 = log 𝑞

v Active security almost for free

○ If leakage on 𝑥 is OK

26



VOLE from Homomorphic Encryption
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Linearly homomorphic encryption

vPKE scheme (𝐾𝑒𝑦𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐), encrypts vectors over ℤ$

vLinear homomorphism:
ØCan compute 𝑎⃗ + 𝑏 or		𝑐 ⋅ [𝑎⃗],	for	𝑐 ∈ ℤ'$,	s.t.

Dec 𝑎⃗ + 𝑏 = 𝑎⃗ + 𝑏
Dec 𝑐 ⋅ 𝑎⃗ = 𝑐 ⋅ 𝑎⃗

Peter Scholl 28

For 𝑎⃗ ∈ ℤ!(, write 𝑎⃗ ≔ Enc)*(𝑎⃗)

Component-wise 
product



Examples of Linearly Homomorphic 
Encryption
vPaillier encryption

ØEach ciphertext encrypts a ℤG element (𝑁 = 𝑝𝑞)

vDDH
ØElGamal in the exponent: poly-size plaintexts in ℤ
ØClass groups: ℤ! for large prime 𝑝 [CL 15]

vRing Learning With Errors (RLWE) [LPR 10]
ØNatively encrypts a vector in ℤ!9
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More on Wednesday!



Naïve VOLE from Linearly Homomorphic 
Encryption
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𝑥 ∈ ℤ! 𝑎⃗, 𝑏 ∈ ℤ!9

𝑝𝑘, [𝑥]

𝑦⃗ = 𝑎⃗ ⋅ 𝑥 + [𝑏]

𝑝𝑘, 𝑠𝑘 ← 𝐺𝑒𝑛(1()

𝑦⃗ = 𝐷𝑒𝑐)*( 𝑦⃗ )

Security:
• Alice: CPA security
• Bob: circuit privacy



Circuit privacy in homomorphic encryption

vIn RLWE, message hidden by “noise”:

vAfter computing 𝑎⃗ ⋅ 𝑥 + [𝑏]:
ØNoise depends on 𝑎⃗ and 𝑏

vClassic solution:
Ø“Noise flooding”
ØRequires much larger ciphertexts

Peter Scholl 31

message

noise 𝑒
(removed in decryption)

extra noise ≫ 𝑎 ⋅ 𝑒 + 𝑏

𝑎 ⋅ 𝑒 + 𝑏

Optimization: ”Gentle noise flooding” [dCHIV 21]
• Encrypt 𝑡-out-of-𝑛 sharing of message
• A few leaked coordinates don’t matter



What about active security?

vWhat can go wrong?
ØAlice/Bob could send garbage ciphertexts…

vWhat about correctness check as in OT?
ØSelective failure is more subtle
ØError may depend on ciphertext noise/secret key

vSolution: zero-knowledge proofs
ØAlice: proof of plaintext knowledge
ØBob: proof of correct multiplication
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ZK proofs for homomorphic encryption

vRLWE is more challenging than number-theoretic assumptions

vProof of plaintext knowledge
ØNaïve sigma protocol: soundness ½
ØVarious optimizations [BCS 19], amortization [BBG 19]
ØStill computationally expensive, often need larger parameters

vProof of correct multiplication
ØEven worse! Tricky to amortize
ØCan be avoided, assuming linear-only encryption [BISW 18, KPR 18]
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Conclusion: Basic constructions and applications
v OLE and VOLE are core building blocks of secure computation

○ Correlated randomness

○ Special-purpose applications like OPRF, private set intersection

○ Next talk: zero knowledge

v Non-silent protocols: OT, AHE

○ Important, even if silent protocols win J

○ Open question: improving RLWE parameters and efficiency

■ Especially for active security
34



Thank you!
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